

"Geological fluids (地質流体)" の種類(主成分)

- 水(液体•気体)
- 超臨界水·超臨界CHO系流体
- ・
 ・
 珪酸塩メルト
- 珪酸塩メルトと超臨界水の混和状態
- •炭酸塩メルト(カーボナタイト)
- 硫化物メルト
- (溶融金属)

流体の関与する重要な現象の例	
 ☆ 変成作用・岩石一水反応 ☆ 鉱床形成・鉱化作用 ☆ フラックス融解 ☆ 部分溶融マントル・地殻からのメルトの分離 ☆ マグマ溜まりプロセス ☆ マントルメタソマティズム ☆ 核形成 	

・ほぼimmiscible "melts" solvus頂部が狭い

calculated from the botton actor (1) botton (1

Over what P-T conditions can <u>geometric adjustment</u> occur?

- 1. > Lowest metamorphic grade (200-300 °C)
 - ← Existence of fluid inclusions (Fracture healing, Grain boundary migration)
- 2. Healing Rate of Fracture & Cracks > Plastic Deformation Rate (Watson & Brenan, 1987, EPSL)
- 3. Fluid production rate < Dispersion rate Segregation rate

Geofluids (2001) **1**, 73–89 **Experimental study of aqueous fluid infiltration into quartzite: implications for the kinetics of fluid redistribution and grain growth driven by interfacial energy reduction** M. NAKAMURA¹ AND E. B. WATSON² ¹Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Japan; ²Department of Earth and Environmental Sciences, Renselaer Polytechnic Institute, Troy, New York, USA